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Abstract

Quantitative time of flight in echo mode ultrasound com-
puted tomography (TFEM USCT) is a highly ill-posed and
typically ill-conditioned inverse problem, where the goal is
to reconstruct the speed-of-sound (SoS) distribution from
time-of-flight measurements. Compared to the more estab-
lished transmission-mode USCT methods, TFEM USCT
poses an even greater challenge due to increased inde-
terminacy, as the travel paths of the ultrasound signals
are not well defined. As such, regularization is essential
for achieving stable and physically meaningful reconstruc-
tions. This numerical study proposes an anisotropic vari-
ation of Tikhonov regularization using a second-derivative
operator to account for directional SoS variations, with
the aim of imaging the entire cardiac region using a sin-
gle sparse linear transducer. The results demonstrate that
the anisotropic regularization approach outperforms its
isotropic counterpart, especially in preserving anatomical
structures such as the myocardium and ventricle cavities.
Moreover, the findings suggest that quantitative imaging of
the cardiac region with a sparse transducer is feasible.

1. Introduction

Conventional ultrasound imaging is typically performed
in B-mode, providing qualitative images for clinical inter-
pretation. However, B-mode imaging is limited not only
by its qualitative nature but also by the presence of arti-
facts and aberrations. These issues largely stem from the
assumption of a homogeneous speed of sound (SoS) dis-
tribution when mapping reflections caused by spatial vari-
ations in acoustic impedance [1]. To address these limi-
tations, time-of-flight echo-mode ultrasound computed to-
mography (TFEM USCT) has emerged as a promising al-
ternative. This technique enables quantitative tissue char-
acterization [2-5] and enhances B-mode reconstructions
by providing more accurate SoS distributions, which serve
as improved inputs for B-mode imaging [1].

Previous studies have primarily employed conventional
small linear or phased transducers to image localized re-
gions of interest (ROIs). This approach allows the use
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of standard ultrasound frequencies while avoiding phase-
wrapping effects [4]. In contrast, the present numerical
study investigates the use of a sparse hypothetical trans-
ducer designed to cover the entire cardiac region simulta-
neously. Such a configuration could enable rapid imaging
of the whole heart, minimizing operator dependence by
eliminating the need to reposition the transducer for dif-
ferent views. This would facilitate comprehensive cardiac
imaging while preserving anatomical context.

Moreover, TFEM USCT inherently holds an ill-posed
inverse problem [4], often resulting in ill-conditioned sys-
tems. Therefore, regularization techniques are crucial to
ensure convergence and to obtain physically meaningful
reconstructions. Tikhonov regularization with a Lapla-
cian operator offers a robust solution to this challenge,
particularly in noisy or data-limited settings. The Lapla-
cian is computationally efficient, its application reduces
to a single matrix multiplication, and it provides smooth
reconstructions suitable for medical imaging. Addition-
ally, the associated cost function yields linear first- and
second-order derivatives, enabling the use of stable iter-
ative solvers such as the Conjugate Gradient for Least
Squares (CGLS) algorithm.

Despite these advantages, the standard Laplacian im-
poses isotropic smoothing, applying uniform regulariza-
tion across all spatial directions. In cases where the SoS
distribution exhibits anisotropic features, such as strongly
layered media or adjacent regions with sharp contrast, this
isotropic approach may be suboptimal. Additionally, it is
well established that axial and lateral resolutions differ in
pulse-echo ultrasound imaging, suggesting that direction-
dependent regularization weights may provide improved
reconstruction performance. To address this limitation,
several studies have explored anisotropic regularization us-
ing first-order derivatives operators with Total Variation
[3,5,6] or Tikhonov [2,4] regularization. While effective in
promoting edge preservation, these methods often compro-
mise numerical stability and smoothness, which are inher-
ent advantages of second-order operators like the Lapla-
cian.

In this study, an anisotropic extension of Laplacian-
based Tikhonov regularization is proposed. The
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herein proposed approach retains the numerical stability
and smoothing properties of second-order regularization
while introducing directional adaptivity to better capture
anisotropic structures in TFEM USCT reconstructions.

2. Theory

In this study, the adaptive aperture strategy based on di-
verging waves is implemented as the time delay estimation
(TDE) method. Following previous work [5], the least-
squares formulation for the TFEM USCT inverse problem
in this TDE approach can be expressed as

argmin J(Ac) =|| HAo — Ae |3 +Gq(o). (1)
Ao

Here, H € R™*™ denotes the ray-path matrix, which dis-
cretizes the imaging domain into n pixels and encodes
the accumulated path lengths contributing to each time-
of-flight (ToF) values. The vector Ao € R" stores the
difference between the conjectured (&) and solution (o)
slowness (inverse of SoS) for each pixel or voxel. The
m reliable ToF measurements are stored in Ae € R™.
The term G, (o) represents the regularization functional
weighted by a scalar parameter a.

For a function f(r) € R", the Laplacian operator is
the divergence of the gradient (V2f(r) = V - Vf(r)).
In order to introduce anisotropy, the following modified
second-order spatial derivative operator is proposed:

O(f(r)) =V - AVI(r), ()

where A € R™*" is a diagonal matrix of directional regu-
larization weights. The diagonal entries of A, ky, € RT U
{0}, control the degree of smoothing in each spatial di-
rection. For simplicity, it is assumed that these weights
depend solely on the direction, not on spatial position.

In two dimensions, using standard finite-difference ap-
proximations, the discrete anisotropic operator La%s° ¢
R™ ™ is defined as

=2k + Ky),  ifj={i}
Laniso_ Ke lf]:{l—l,Z—Fl}
M) Ry, ifj={i—ngit+ng}t
0, otherwise .

3

where n = n,;n,, is the total number of pixels, and n,, and
n, are the number of pixels along the x and y directions,
respectively.

With prior knowledge of the solution, denoted as o prior,
the regularization term in Equation (1) becomes

Ga(o) = a”Laniso(U - o'prior)H% . )

When prior information indicates that SoS variations are
directionally dependent —either globally or in a piecewise
manner— the regularization weights can be adjusted ac-
cordingly. Increasing the regularization in a particular di-
rection (e.g., x) tend to prevent solutions with large second
derivatives yielding smoother transitions along that direc-
tion. Conversely, reducing the penalty allows solutions
with greater second derivative and sharper variations in
that direction. This mechanism helps guide the solution
away from non-physical local minima and toward more
plausible reconstructions.

To reduce the number of tunable parameters and main-
tain consistent regularization balance across directions, the
constraint k., + &, = 1 may be imposed. Under this con-
straint, one can define k = &, so that k, = 1 — k. This
formulation allows intuitive control over the anisotropy of
the regularization by varying a single parameter x. Table 1
summarizes the qualitative effects of varying « relative to
the isotropic case (k = 0.5).

Table 1.  Qualitative interpretation of the impact of
anisotropic regularization compared to the isotropic case
(k = 0.5).

Solution V¢ Smoothness

K Y x Y x
< 0.5 Larger Smaller Lower Higher
> 0.5 Smaller Larger Higher Lower

3. Materials and Methods

To evaluate the proposed anisotropic regularization
technique and cardiac imaging with a single linear large
transducer with sparse elements, a numerical simulation
was performed using the k-Wave toolbox for MATLAB
[7]. The simulation domain was defined as a 150 x
150 mm? area, discretized into a 660 x 660 pixels grid.
To cover the entire cardiac region, a linear transducer ar-
ray was modeled with a total length of 120 mm, con-
sisting of 128 punctual elements spaced with a pitch of
0.9091 mm. Given the domain size and the need to avoid
phase-wrapping while maintaining adequate spatial reso-
lution, a central frequency of 1 MHz was selected for a 3-
cycle Gaussian-modulated pulse. The temporal resolution
was set to At = 1.4384 x 1074 s.

The numerical phantom, shown in Figure 1, represents a
simplified axial cross-section of the human thorax, closed
on the heart region. It features anatomical components
such as the left and right ventricles filled with blood
(1580 m/s), myocardium (1560 m/s), lungs (1480 m/s),
and connective tissue as the background (1520 m/s). Bone
structures were not included in this preliminary study.

To enable TDE, scatterers were emulated by intro-
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ducing small density variations over 10 % of the pixels
randomly selected, following a normal distribution with
mean [idensity = 1000 kg/m3 and standard deviation
Odensity = 9 kg / m?3. Acoustic attenuation was neglected
for this preliminary evaluation.
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Figure 1. Cardiac simplified SoS numerical phantom.

The ROI for reconstruction, as indicated in Figure 1, is
a square zone directly in front of the transducer array. The
transducer elements, shown as small circles, appear as a
thick line at the top of the ROI due to pixel size and ele-
ment count.

The forward model, used to solve the inverse problem,
assumed a homogeneous SoS and employed a straight-
ray approximation to estimate the wavefront travel paths.
The reconstruction algorithm was implemented in MAT-
LAB using a stacked Conjugate Gradient for Least Squares
(CGLS) method [8,9], iterated for 600 steps to ensure con-
vergence.

The system matrix H was constructed by computing
the intersections between straight-ray paths and the dis-
cretized grid, assigning the corresponding segment lengths
to the appropriate matrix entries. Reconstructions were
performed assuming a homogeneous prior slowness ¢ =
1/1530 s/m, similar to the human body soft tissue average
value admitted by commercial equipment manufacturers.

The SoS images were reconstructed on a coarser 65 X 65
grid. All simulation and reconstruction parameters were
empirically tuned. The regularization weight was fixed
at a = 0.20 for all reconstructions. To limit the receiv-
ing aperture’s directivity, an f-number of 0.75 was applied
[10]. Additionally, a normalized cross-correlation thresh-
old of 0.75 was used to assess the reliability of time-delay
estimation (TDE) signals based on waveform similarity.
The range of SoS values in the reconstructed images was
defined by the minimum and maximum within each re-
sult. To study the influence of the anisotropic regulariza-
tion parameter x, values ranging from 0.00 to 1.00 in in-

crements of 0.05 were tested. The reconstruction quality
was quantitatively assessed using the root mean squared
error (RMSE) metric.

4. Results and Discussion

Reconstructions of the numerical phantom using various
values of the anisotropic coefficient x, ranging from 0.10
to 0.80 in 0.10 increments, are shown in Figure 2. Each
reconstructed image displays the corresponding « value in
the top-left corner. Quantitative RMSE results for all x
values are presented in Figure 3, including values for each
anatomical structure as well as the overall reconstruction
(denoted as total).

The lowest RMSE values were observed for « values be-
tween 0.35 and 0.45, depending on the structure evaluated.
Across all structures, reconstructions using anisotropic
regularization outperformed the isotropic case (k = 0.5).

1580 1580
K = 0.10 U k=020
5 . e 1570
¥ 1 1560
! 1560
1550
1550
1540
£ 1540 £
1530
1530

1510

1500
1590

1580
1570
1560
1550 £ 1550
1540 1540
1530 1530
1520

1520

1510
1600

1510
1610

1590 1600

1580 1590

1580
1570
1570
1560

£ 1560
1550
1550

1540
1540

1530 1530

1520 1520

1510

B 1510
1610

1620

1600 1610

1590 1600

1550 1590
1580
1570

. 1570
1560 & B
1560

1550
1550

5
1340 1540

1530 1530

1520 1520

Figure 2. Speed-of-sound (SoS) reconstructions for some
of the anisotropic coefficient values.
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Figure 3. Root mean square error (RMSE) (m/s) by struc-
ture for all anisotropic coefficient values.

The myocardium and ventricular regions exhibited the
best reconstruction quality when x = 0.45. For k > 0.45,
the myocardium and ventricles (fully blood filled) regions
experienced a noticeable degradation in accuracy, as re-
flected by a steep increase in RMSE. This behavior can
be attributed to the anisotropic smoothing effect: as « in-
creases, regularization favors smoothing along the hori-
zontal (y) direction.

While reconstructions obtained with x = 0.40 and
x = 0.50 may appear visually similar, closer inspection
reveals that smaller anisotropic values, within the range
0.35 < Kk < 0.45, better preserve the cross-sectional ge-
ometry of the heart. This observation is supported by the
lowest RMSE values for both the myocardium and lungs
occurring at £ = 0.45. For the ventricular regions, the
lowest RMSE was achieved with x = 0.40. This result
aligns with expectations, as the ventricles are structurally
similar and require reconstructions with reduced smooth-
ing and higher gradients in the horizontal (y) direction to
accurately delineate their boundaries.

5. Conclusion

This study proposed a Tikhonov regularization method
with an anisotropic second-derivative operator to improve
cardiac quantitative ultrasound imaging using a single
large transducer. Results show that directionally depen-
dent regularization enhances reconstruction both quantita-
tively and qualitatively, especially when incorporating ex-
pected axis-specific SoS contrast. These findings indicate
the feasibility of quantitative cardiac SoS imaging with a
single large-aperture transducer. Future work will validate
the method experimentally, assess the realism of the simu-
lations, and compare it with state-of-the-art approaches.
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